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Experiments on ripple instabilities. Part 3. 
Resonant quartets of the Benjamin-Feir type 
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Instabilities and long-time evolution of gravity-capillary wavetrains (ripples) with 
moderate steepnesses ( E  < 0.3) are studied experimentally and analytically. Wave- 
trains with frequencies of 8 < f < 25 Hz are generated mechanically in a channel 
containing clean, deep water ; no artificial perturbations are introduced. Frequency 
spectra are obtained from in situ measurements ; two-dimensional wavenumber 
spectra are obtained from remote sensing of the water surface using a high-speed 
imaging system. The analytical models are inviscid, uncoupled NLS (nonlinear 
Schrodinger) equations : one that describes the temporal evolution of longitudinal 
modulations and one that describes the spatial evolution of transverse modulations. 

The experiments show that the evolution of wavetrains with sensible amplitudes 
and frequencies exceeding 9.8 Hz is dominated by modulational instabilities, i.e. 
resonant quartet interactions of the Benjamin-Feir type. These quartet interactions 
remain dominant even for wavetrains that are unstable to resonant triad interactions 
(f > 19.6 Hz) - if selective amplification does not occur (see Parts 1 and 2). The 
experiments further show that oblique perturbations with the same frequency as the 
underlying wavetrain, i.e. rhombus-quartet instabilities, amplify more rapidly and 
dominate all other modulational instabilities. The inviscid, uncoupled NLS equations 
predict the existence of modulational instabilities for wavetrains with frequencies 
exceeding 9.8 Hz, typically underpredict the bandwidth of unstable transverse 
modulations, typically overpredict the bandwidth of unstable longitudinal mod- 
ulations, and do not predict the dominance of the rhombus-quartet instability. When 
the effects of weak viscosity are incorporated into the NLS models, the predicted 
bandwidths of unstable modulations are reduced, which is consistent with our 
measurements for longitudinal modulations, but not with our measurements for 
transverse modulations. 

Both the experiments and NLS equations indicate that wavetrains in the 
frequency range 6.4-9.8 H z  are stable to modulational instabilities. However, in 
these experiments, wavetrains with sensible amplitudes excite one of the members of 
the Wilton ripples family. When second-harmonic resonance occurs, both the first- 
and second-harmonic wavetrains undergo rhombus-quartet instabilities. When 
third-harmonic resonance occurs, only the third-harmonic wavetrain undergoes 
rhombus-quartet instabilities. 

t Present address: Department of Naval Architecture and Marine Engineering, University of 
Michigan, Ann Arbor, M I  48109, USA. 



230 M .  Perlin and J .  Hammack 

1. Introduction 
Gravity-capillary wavetrains (ripples) on a water surface exhibit a variety of 

instabilities. For wavetrains with moderate amplitudes, these instabilities and 
typical scales can be identified using the inviscid dispersion relation for an 
infinitesimal wavetrain : 

w2 9 
k2 k c2:=-=-(1+7)tanhkh; 

Tkz 
P9 

7 ' - .  

In (l), w is the radian frequency, g is the gravitational force per unit mass, p is the 
mass density, T is the surface tension, h is the quiescent water depth, k is the 
magnitude of the wave vector, c is the wave celerity defined in terms of these 
parameters, and 7 is a reciprocal Bond number that may be interpreted as the ratio 
of surface tension and gravitational energies. These energies are equal (7 = 1) for a 
wavetrain whose cyclic frequency is f = w/2x = 13.6 Hz and wavelength is h = 
2x/k = 1.7 cm. (Herein we assume that T = 73 dyn/cm and kh % 1 ;  both are 
applicable to our experiments.) In  general, we can define ripples as those waves in a 
range, say, from T = 0.1 (f = 5.6 Hz and h = 5.4 cm) to 7 = 10 (f = 56 Hz and 
h = 0.54 cm) so that gravity waves occur for 7 < 0.1 and capillary waves occur for 
7 > 10. An important instability of ripples was investigated by Wilton (1915) who 
found that internal resonances occur for a countable family of wavetrains 
corresponding to 

According to (1) and (2), Wilton n = 1/7 ripples have the same speed as their nth 
harmonic. For example, Wilson n = 2 ripples (7 = 0.5) correspond to a wavetrain 
whose frequency is 9.8 Hz. This wavetrain can be viewed as a degenerate case of a 
more general class of instabilities resulting from resonant three-wave interactions. 
Both the Wilton n = 2 ripples and resonant triad interactions were reviewed and 
investigated in Part 1 of this series (Henderson & Hammack 1987); a further 
investigation is presented in Part 2 (Perlin, Henderson & Hammack 1990). According 
to RIT (resonant interaction theory), a wavetrain's frequency must exceed 19.6 Hz 
(7 = 2) before it becomes unstable to background waves through resonant triad 
interactions. (Second-harmonic resonance is the exceptional case.) Wavetrains with 
frequencies below 19.6 Hz can first be destabilized by resonant four-wave 
interactions. Resonant quartet interactions can occur when the wave vectors k = ( I ,  
m) and frequencies w of four infinitesimal wavetrains satisfy the kinematical 
conditions : 

T = l /n  (n = 2 , 3 , .  . .). (2) 

k,+k, = k3fk4, (3a) 
w1fw2 = wsfw4.  (3b) 

Theoretical investigation of resonant quartets is tiresome, owing to straightforward 
but tedious algebra when solving (3) and when deriving the evolution equations; 
reviews are given by Phillips (1977) and Craik (1985). Degenerate cases are somewhat 
easier to analyse, and they are especially important in the evolution of our 
experimental wavetrains. An example that occurs in the experiments is third- 
harmonic resonance (Wilton n = 3 ripples) corresponding to an 8.37 Hz wavetrain. 
The wave vectors in this quartet are collinear, and in (3) we take f, = f 2  = f3 = 
8.37 Hz, f4 = 25.11 Hz, k, = k, = k, = 2.12 rad/cm, k, = 6.36 rad/cm, and choose 
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appropriate signs. Another example that dominates most of our experiments 
involves two wave-vector pairs, which sum according to (3a) to form a nearly 
collinear, nearly rhombus parallelogram, i.e. 

k,  = k, = : k ,  (4a) 
k, = k, =: k+6k, (4b) 

w ,  =us =:o, (44  
w2 = w, = : w + 6 o ,  ( 4 4  

where 6k = (61, am) is the modulational wave vector with 6k Q k, and 

where 6w is the modulational frequency with Sw 4 o. Hence, this quartet comprises 
only two identifiable wavetrains that interact collinearly when there are no 
transverse modulations (am = 0), and interact obliquely when there are transverse 
modulations (Sm + 0). 

Studies of degenerate quartet interactions described by (4) have focused on the 
evolution of a single wavetrain (k, ,  w,)  interacting with a continuum of smaller- 
amplitude, second waves with modulational wavenumbers and frequencies. Lighthill 
(1965), Benjamin & Feir (1967), Whitham (1967) and Zakharov (1968) conducted the 
seminal studies of this type for collinear gravity wavetrains and discovered their 
instability to longitudinal modulations. (Hereinafter, we refer to instabilities 
resulting from either transverse or longitudinal modulations as BF (Benjamin-Feir) 
instabilities.) Dynamical equations for the evolution of BF instabilities have been 
derived by numerous investigators including Benney & Newell (1966), Benney & 
Roskes (1969) and Davey & Stewartson (1974) who examined gravity waves, and 
Djordjevic & Redekopp ( 1977) who examined ripples. For collinear interactions, 
these equations reduce to the well-known NLS (nonlinear Schrodinger) equation, 
which was independently derived for water waves by numerous investigators, 
including Zakharov (1968) and Hasimoto & Ono (1972). The NLS equation arises in 
many branches of physics, and it has received considerable attention since Zakharov 
& Shabat (1972) showed that it is completely integrable using IST (inverse scattering 
transforms, see e.g. Ablowitz & Segur 1981, for a review of IST). NLS equations will 
be exploited in the investigation presented herein. 

The object of this study is to investigate the stability and long-time evolution of 
ripple wavetrains with moderate steepnesses in the presence of naturally occurring 
perturbations. The experiments motivate a review in $2 of classical results for BF 
instabilities of wavetrains with longitudinal modulations and an introduction of NLS 
equations that describe the temporal and spatial evolution of wavetrains with 
transverse modulations (only). We discuss theoretical predictions of these equations 
that are tested by our experiments, and we review predictions arising from less 
restrictive model equations for the long-time evolution of gravity, capillary and 
ripple wavetrains. We also discuss the modifications of the inviscid NLS models due 
to weak viscosity. In $3 we describe the laboratory apparatus and practices with 
special emphasis on a high-speed imaging system that allows us to obtain 
quantitative measurements of wave vectors by remote sensing of the water surface. 
Experimental results are presented and compared with theoretical predictions in 54 ; 
a discussion of our results and conclusions are presented in $5.  An epilogue is 
presented in 6 that summarizes our experimental observations in this three-part 
series of papers with an emphasis on a fundamental failure of RIT to predict, even 
qualitatively, the evolution of ripple wavetrains when resonant triads are 
dynamically possible. 
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2. Theoretical considerations and literature review 
The discovery of a gravity wavetrain’s instability to longitudinal modulations 

coupled with the discovery of IST and its success in solving the NLS equation have 
precipitated a bountiful literature. Most of this literature concerns gravity waves, 
though there are important exceptions that examine ripple and capillary wavetrains. 
In  this section, we review the literature in order to explain our experimental 
measurements of ripples ($4) and contrast their behaviour with that of gravity and 
capillary wavetrains. (Detailed reviews can be found in Yuen & Lake 1982 and Craik 
1985.) First, we review NLS equations with an emphasis on their underlying 
approximations. Secondly, we introduce the models that are applied to our 
experiments. Thirdly, we discuss the limitations of NLS equations for modelling the 
long-time evolution of wavetrains and review results from less restrictive, and 
presumably better, models. Finally, a discussion of viscous effects is presented with 
special emphasis on the reduction in the bandwidths of unstable modulations. 

2.1. The NLS equations and modulationul instabilities 
Consider a water layer that is bounded above by a free surface with uniform tension, 
bounded below by an impermeable, rigid solid, and unbounded in lateral extent. 
Water motions are references to a right-handed Cartesian coordinate system Ox‘y’z’ 
with the (z’, y’)-plane embedded in the quiescent free surface and the 2’-axis pointing 
upward, opposite gravity. The inviscid irrotational motions are describable in terms 
of a harmonic velocity potential #(d, y‘, z’, t ’ )  and the (related) vertical deformation 
q(x’, y’, t ’ )  of the water surface from its quiescent position. The unknowns satisfy 
nonlinear boundary conditions (Lamb 1932, 3 110), which make the water-wave 
problem analytically intractable. Here, we are interested in approximate solutions 
that embody the properties of (4), i.e. a small-amplitude wavetrain that is nearly 
monochromatic and nearly one-dimensional. Further, we assume that the wavetrain 
has a characteristic amplitude a,, and propagates mainly in the x’-direction. In order 
to make these approximations explicit, we introduce three small parameters of the 
same order: 

where the wave steepness E measures nonlinearity, Im\/k measures two-dim- 
ensionality, and 6klk measures the modulational wavenumber bandwidth. We also 
require (kh)2 % E to avoid shallow water. Using expansions for q5 and 7 and standard 
perturbation methods, the first-order solution for the infinitesimal wavetrain is : 

[A’ eis +A’* e-is] + @’ 
cash k(z’+h) ( coshkh 

q5(z’, y‘, z’, t’) = E 

q(x’,y’,t’) = s(aeiB+a*e-”), (7) 

in which 8 = kd-wt’, (8) 
w is given by the dispersion relation of ( i ) ,  @’ is a constant at this order and (*) 
denotes complex conjugate. The complex amplitude a of the wavetrain is related to 
the complex amplitude of the velocity potential by 
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To determine higher-order effects we use the method of multiple scales and introduce 
slow spacescales and timescales (ex', BY', d', €9'; see Ablowitz & Segur 1981). Carrying 
out the expansions to second order, i.e. O(e2), we obtain the well-known results that 
envelope modulations propagate with the energy speed U of an infinitesimal 
wavetrain, i.e. 

dw 1 +37 

and induce a mean flow given by V W .  In order to proceed to third order, we view the 
motion in dimensionless envelope coordinates : 

x = sk (d  - Ut'), y = eky', t = E ~ W ,  t', 
A = k2/wo A', @ = k2/w,  W ,  

where wo = (gk)i. Carrying out the expansions we find that A and @ satisfy the 
following equations : 

A, + YA,, + P&/ = XIA 1)"A + X I  @, A 3 ( 1 W  
P@zz + @rv = -P1(lAI2)z, (12b) -- 

where the (real) coefficients are given by 

27 

u = tanh kh, kU 
p = - - 2 0 ,  

2w0 

+ 8a2 - 2( 1 -a2))"( 1 + 7 )  -- (1 -a2) (9-g2) + 7 ( 3 - g 2 )  (7 -a2) 
u2 - 7( 3 - u2) 

The derivation of (12)  outlined above closely follows Ablowitz & Segur (1979, 1981, 
54.3b). (A misprint in the numerator of the first bracketed term of (13d)  for the 
coefficient x in their expression has been corrected.) Similar equations for ripples 
were derived by Djordjevic & Redekopp (1977) ; equations of this form for gravity 
waves were obtained by Benney & Roskes (1969) and Davey & Stewartson (1974). 
Unfortunately, (12)  does not appear to be solvable using IST over the full range of 
parameters for which it remains a valid model (Ablowitz & Segur 1979). 

2.1 . l .  Evolution of wavetrains with longitudinal d u l a t i o n s  
When transverse variations are neglected in (12) ,  i.e. ar = 0, the equations for the 

mean flow and envelope velocity potential decouple to yield the evolution equations : 

iA,+@,, = ll/IAl2A, (144  
@z = -(PJP)lAI2, ll/ = X - X 1 P 1 / P .  (14b, 4 

Equation (14a) is the NLS equation; it was first derived by Benney & Newel1 (1966), 
Zakharov (1968) and Hasimoto & Ono (1972); and it was shown to be completely 
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1.36 kh 

FIGURE 1. Map of parameter space for the nonlinear Schrodinger equation showing regions of 
stability Y and instability Q of a wavetrain to longitudinal modulations. 0,  location of an 
experiment. 

integrable using IST by Zakharov & Shabat (1972). In particular, Hasimoto & Ono 
(1972) used ( 1 4 4  to study the onset and evolution of the longitudinal Benjamin-Feir 
instability of gravity wavetrains. A wavetrain’s stability depends on the sign of the 
coefficient product c$, with c$ < 0 for instability. Regions of stability and 
instability are best presented using a map of parameter space that shows curves 
across which sign changes in the product c$ occur. Figure 1 is an extension of the 
map presented by Djordjevic & Redekopp (1977) and Ablowitz & Segur (1981, p. 
321). Regions of stability (9 ) and instability (42 ) to longitudinal modulations are 
indicated. The classical instability of gravity (7 = 0) waves for kh > 1.36 (Whitham 
1967) occurs in consequence of a simple zero in the coefficient 9. As surface tension, 
or 7 ,  increases for kh > 1.36, wavetrains remain unstable until a simple zero in 6 
occurs at  7 = 0.155, corresponding to a wavetrain whose frequency is 6.4 Hz when 
T = 73 dyn/cm. Wavetrains then remain stable until 7 = 0.5 (Wilton n = 2 ripples) 
where a singularity in $ (actually in x) occurs. Wavetrains are unstable for further 
increases in surface tension (or frequency) until another singularity in $ (due to a 
zero in ,8) is encountered. This singularity corresponds to a long-wave, short-wave 
resonance discussed by Djordjevic & Redekopp (1977). For larger r, wavetrains 
become stable once more before a final region of instability occurs when another 
simple zero of $ is encountered. 

Figure 1 also shows the location of our experiments that include wavetrains with 
five different frequencies. Table 1 summarizes theoretical parameters, which are 
based on infinitesimal amplitudes, for these five wavetrain frequencies. According to 
figure 1 and the parameters listed in table 1, three experimental wavetrains are 
expected to be unstable to longitudinal modulations, one is expected to be stable, 
and one (Wilton n = 2 ripples) is not predicted since it lies on a singular boundary 
of parameter space. 



25.0 157.1 78.8 6.33 0.99 24.8 31.0 31.1 2.98 0.685 0.223 0.073 6.42 2.87 10.8 0.40 0.45 
17.0 106.8 66.9 4.56 1.38 23.4 25.9 22.5 1.55 0.476 0.485 0.237 4.63 1.70 15.2 0.23 0.25 2. 
13.6 85.5 60.2 3.69 1.70 23.2 23.2 18.2 1.00 0.358 1.025 0.658 3.75 1.23 18.9 0.14 0.15 3 

- - 2.62 0.73 27.1 - - 9.8 61.6 50.3 2.58 2.43 23.8 19.9 12.7 0.50 - 
8.0 50.3 44.2 1.99 3.16 25.3 18.3 9.8 0.29 - - - 2.02 0.51 36.1 - - 5’ 

8 g t Viscous calculations use u = 0.01 cmz/s. 
*. cc TABLE 1. Theoretical parameters for experimental wavetrains based on infinitesimal amplitudes with h = 4.92 cm and T = 73 dyn/cm 
H. m 
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Quantitative information for unstable modulations was obtained from (14a) by 
Hasimoto & Ono (1972) who noted that this equation has nonlinear plane envelope 
solutions of the form 

A ( x ,  t) = A,exp (i(Kx-Qt)), 

which satisfy the envelope dispersion relation 

0 = [ K 2  -k !&&I2, (15b) 

with [ > 0 and $ < 0 for the unstable case. Using these solutions, they examined the 
Stokes' wavetrain ( K  = 0) perturbed by collinear wavetrains and found an unstable 
band of modulational wavenumbers, 

0 < IK( < lAol ( - 2$h/5)t = : K ,  ( 1 6 4  

as well as the most-unstable wavenumber, K,, and its initial temporal growth rate, 
Y m  

K 
IKmI = IMoI (-$/[I' = 2/2> Y m  = -$lAo12. (16b, c) 

These results reconfirmed and extended earlier results for the BF instability. The 
parameters [ and $, which depend only on properties of the underlying infinitesimal 
wavetrain, are listed in table 1 for each unstable wavetrain frequency in our 
experiments. For subsequent comparison with experimental data, we also note that 
the (dimensional) most-unstable longitudinal wavelength A,  and its e-folding 
distance e, are given by 

2n U A ,  = - ex = -, 
K m  k' Y m  "0 

and that the (dimensional) amplitude, a,, of the wavetrain is related to the 
(dimensionless) envelope amplitude, A,, according to 

wka, 
l A o l  = 20, tanh kh' 

2.2.2. Evolution of wavetrains with transverse modulations 
When longitudinal variations are neglected in (12), i.e. a, = 0, the equations for the 

mean flow and envelope velocity potential decouple to yield the evolution equations : 

iA,+pA,, = xIA12A, (184  

CDyv = 0. (18b)  

While (18a) is mathematically equivdent to  (14a), the wave motion described is 
quite different. The wavetrain still propagates in the x-direction ; however, only 
transverse modulations, which result from obliquely interacting wavetrains, occur. 
The stability of the wavetrain to these oblique wavetrains depends on the sign of the 
coefficients' product, with instability occurring for px < 0. Since p 2 0, there is only 
one curve in parameter space, which corresponds to  the singularity in x for Wilton 
n = 2 ripples. Since x < 0 for 7 > 0.5, all wavetrains with f > 9.8 Hz on clean, deep 
water are unstable to transverse modulations. Hence, the inviscid, uncoupled NLS 
equations (14a) and (18a), which are approximations to  (12), predict that our 
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experimental wavetrains with frequencies exceeding 9.8 Hz are unstable to both 
longitudinal and transverse modulations, while our experimental wavetrains with 
frequencies below 9.8 Hz are stable to both. 

Motivated by experimental observations, we introduce dimensionless coordinates 
and write (18a) in laboratory coordinates to obtain: 

X := kx', y := ky', (19) 

The experiments show that envelopes of the wavefields are (quasi-) steady in 
laboratory coordinates during timescales appropriate to the NLS equation. Assuming 
steady motion, our primary model equation for studying the stability of ripple 
wavetrains with transverse modulations is : 

i4 ,+~-Ayy  = fIAIZA, (21 a )  

in which 

Again, (2 la)  is mathematically equivalent to (14a) and (18a), but represents a 
different physical situation that is more commonly found in diffraction studies ; it 
describes the spatial evolution of the transverse modulations in laboratory 
coordinates. Following Hasimoto & Ono (1972), nonlinear plane envelope solutions 
of (21a) with the form 

A(Y,X) = Aoexp (i(qY--Pm), ( 2 2 4  

(22 b)  have a dispersion relation p = $q2 + fIAo(2. 

The band of unstable transverse modulational wavenumbers is 

while the most unstable transverse wavenumber qm and its initial (spatial) growth 
rate I', are: 

lqml = Vol (-f/b)'  = lAol(-2f)f = Q/v'~, r m  = -fVoI'* (23b,  4 
The parameter f , which depends only on properties of the underlying infinitesimal 

wavetrain, is listed in table 1 for each unstable wavetrain frequency in our 
experiments. The (dimensional) most unstable transverse wavelength A ,  and its e- 
folding distance e, are given by 

1 e =- 2R A , = -  qmk' , r m k '  

We note from (17b) and (24b) that e, x e, for deep water as in our experiments (see 
table 3). Hence, uncoupled NLS equations suggest that the most unstable 
longitudinal and transverse modulations grow a t  equal (spatial) rates. We also note 
that the transverse instability leads to a directional spreading of wave energy within 
angles of & 8, from the direction of the wave vector of the underlying wavetrain ; this 
angle is given by 

8, = arctan (Q). (25) 
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4 
FIQURE 2. Schematic drawing (not to scale) of wavenumber space illustrating the directional spread 
of energy (amplitude) of a wavetrain (dotted arrow) owing to unstable transverse modulational 
wavenumbers (solid line). 

Theoretical results for the transverse spatial instability are illustrated in figure 2, 
which shows the dimensional wavenumber plane, ( I ,  m), with a wave-vector in the 1- 
direction that represents the underlying wavetrain. Both branches of the dispersion 
curves (parabolas) for the envelope modulations of (22 b )  are shown in the dimensional 
@k, qk)-plane whose origin is at the tip of the input wave vector. Only the portions 
of these branches within the unstable transverse wavenumber band are shown. Note 
that the longitudinal wavenumber p ,  k, which corresponds to the most unstable 
transverse modulation qm, is zero, whereas a wavetrain with no transverse 
modulation, i.e. qk = 0, has a small longitudinal wavenumber equal to the spatial 
growth rate r, k, which is also the longitudinal wavenumber for qk = Qk at the edge 
of the unstable band. (These longitudinal modulations are the spatial frequencies of 
the plane envelope solutions, analogous to the temporal frequency $2 in (15b).) 
Wavenumber spectra measured in the experiments for wavetrains with f > 9.8 Hz 
are expected to show energy (or amplitude) along the unstable branches of the 
dispersions curves shown in figure 2. 

Another property of the plane envelope solutions of (22a) is their spatial phase 
speed, c,, which is referenced to laboratory coordinates, and is found from the 
dispersion relation of (22b) to be 

ce := P/q = iiq + R/ql(Ao12* (26) 

A trajectory of constant phase in the (Y,X)-plane will lie on a straight line with a 
slope 

so that it forms an angle with the X-axis given by 
dY/dX = C, (27 ) 

8, := arctan (c , ) .  (28) 

Using (23), (26) and (28) we find that lines of constant phase have the following 
angles for the range of unstable transverse wavenumbers : 
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Of particular interest in the experiments are envelope nodal lines that are distinctive 
features of the observed wave pattern; they appear as ‘striations’. According to (29), 
these striations can occur at  any angle up to 90’; however, if the pattern is 
dominated by the most unstable wavenumber, the striations should be parallel to the 
wave-channel axis. When striations occur, these results allow us to estimate the 
associated transverse wavenumber, say qs, based on the striation angle, which is 
easily measured from a photograph of the surface wave pattern. From (26) and (28) 
we find that 

where the root(s) must be chosen so that the narrow-band approximation of ( 5 )  is not 
violated. 

2.2. Long-time evolution of wavetrains 
The long-time evolution of periodic wavetrains that are modulationally unstable has 
received considerable study (see Yuen & Lake 1982, or Craik 1985, for reviews). 
Nevertheless, definitive predictions for either gravity, gravity-capillary, or capillary 
wavetrains remain elusive. Analytical insight is especially difficult, even from weakly 
nonlinear models such as the NLS equation, since IST is not easily extended to 
periodic initial data. Numerical studies of the NLS equation for gravity waves (Yuen 
& Ferguson 1978) and experiments (Lake et al. 1977) showed the existence of 
modulational and demodulational cycles that lead to near recurrence of the original 
wavetrain. Ma (1979) used IST and the NLS equation to examine the evolution of 
wave envelopes that decay to a uniform (non-zero) constant at  infinity, and he found 
an unsteady soliton solution that is also suggestive of recurrence. Martin & Yuen 
(1980) examined gravity wavetrains with oblique perturbations using a two- 
dimensional NLS equation 

qs = +(tane,f(tan28,+2r,)t), (30) 

i4+&z+d,, = XIAl24 (31) 
which is the deep-water limit (kh+ 00) of (13). (Equation (31) was first derived by 
Zakharov (1968); according to Ablowitz & Segur (1981, $3.7), it is not solvable by 
IST.) Martin & Yuen found an unbounded band of unstable wavenumbers that 
allows energy leakage to large wavenumbers. This leakage prevents recurrence, but 
more importantly, high wavenumbers violate the narrow-band approximation that 
underlies (31). Once this shortcoming was discovered, attention turned to less 
restrictive models that remain applicable for larger modulational wavenumbers and 
larger wavetrain nonlinearities. Here, we summarize results from these other models 
for gravity, capillary, and ripple wavetrains. 

2.2.1. Gravity wavetrains 
Crawford et al. (1981) exploited an integro-differential equation of Zakharov (1968) 

to study longitudinal and transverse modulations of gravity wavetrains of moderate 
amplitudes. For longitudinal modulations, they found that higher-order nonlinear 
effects reduce the growth rates and bandwidth of unstable wavenumbers. For oblique 
interactions, the Zakharov equation predicts that the band of unstable wavenumbers 
is bounded and that the most unstable modulations are longitudinal. Extensive 
numerical computations using the Zakharov equation (see Yuen & Lake 1982, and 
the references cited therein) show a variety of long-time behaviours that depend on 
wavetrain nonlinearity, the distribution of unstable modes, and the number of modes 
included in the calculations. As wavetrain nonlinearity increases, behaviour ranges 
from recurrence to chaos ; however, at  sufficiently large amplitudes, which exceed the 
putative range of validity of the Zakharov equation, the wavetrain stabilizes, i.e. the 
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band of unstable wavenumbers vanishes. The existence of neutrally stable 
perturbations gives rise to the possibility of bifurcated solutions, which were found 
for gravity waves using the Zakharov equation by Saffman & Yuen (1980a, b )  and 
Ma (1982a). 

McLean et al. (1981) and McLean (1982a, b )  examined the stability of large- 
amplitude gravity wavetrains to oblique perturbations. They found a class of 
instabilities (resonant quintets, termed class 11), first noted by Longuet-Higgins 
(1978) in one dimension, whose most unstable wave vector is always oblique, similar 
to two-dimensional bifurcated solutions. These class I1 instabilities dominate 
Benjamin-Feir instabilities (termed class I), which disappear for large amplitudes. 
They also found neutrally stable perturbations, which suggest the possibility of 
bifurcated solutions. Meiron, Saffman & Yuen (1982) confirmed the existence of 
bifurcated solutions using Euler’s equations ; these results were extended by Chen & 
Saffman (1985). Experimental evidence of bifurcated solutions and BF instabilities 
among deep-water gravity waves was presented by Melville (1982), Su (1982) and 
Su et al. (1982). 

2.2.2. Capillary and ripple wavetrains 
Chen & Saffman (1985) examined the stability of capillary wavetrains on deep 

water using (31) as well as Euler’s equations. Their results showed that small- 
amplitude wavetrains are most unstable to oblique perturbations ; however, large- 
amplitude wavetrains are most unstable to collinear perturbations. Neutrally stable 
perturbations also occur a t  large amplitudes, and bifurcated solutions were obtained. 
Hogan (1985) used the Zakharov equation and the narrow-band approximation to 
derive a fourth-order equation for the evolution of modulated ripple wavetrains. 
Hogan’s fourth-order results predict a larger band of unstable wavenumbers than a t  
third-order. Hogan also showed that the band of third-order modulationally stable 
waves, i.e. 0.155 < 7 < 0.50 (see figure l ) ,  remains stable a t  fourth order. 

Chen & Saffman (1979, 1980) examined one-dimensional bifurcations of ripple 
wavetrains that include Wilton ripples. These results were extended to two- 
dimensions by Ma (1982b) using the Zakharov equation. Zhang & Melville (1987) 
investigated the stability of large-amplitude ripples with 7 > 2, and found 
instabilities occurring in the neighbourhood of linear triad, quartet, and quintet 
resonance curves. They also found that BF instabilities disappear for ripple 
wavetrains wit,h moderate amplitudes, but reappear for large amplitudes. The wave 
vector of the most unstable wavetrain is generally oblique, though not always. 
Neutrally stable perturbations were also found. 

Henderson ( 1986) conducted ripple experiments for wavetrains with frequencies of 
5, 13.5, and 15 Hz, and concluded that only one resonant quartet was excited: a 
degenerate quartet consisting of two waves with the same frequency and 
wavenumber magnitude so that their wave vectors formed a rhombus. (We find that 
her conclusion is essentially correct; however, we also show that a continuum of 
rhombus quartets are amplified and that this process is predicted (somewhat) by a 
NLS equation.) 

2.3. Viscous eflects 
All of the theoretical models described above neglect fluid viscosity, v ; nevertheless, 
viscous effects can be significant for fluid motions with the lengthscales of ripples and 
capillary waves. In $3 and in Part 1, fairly elaborate precautions are described for 
minimizing viscous effects arising at the water surface in our experimental facility. 
In spite of these precautions, Henderson & Lee (1986) showed that the viscous 
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damping of our experimental waves is predicted well by a model that assumes the 
surface is inextensible (Lamb 1932, $$349-351). According to this weak-viscosity 
model, thin Stokes' (laminar) boundary layers give rise to a viscous attenuation of 
wave amplitudes and to a viscous dispersion relation. For deep, wide channels, as in 
our experiments, the damping rate y, and its e-folding distance e, are given by 

y, = (Qvk:w,)i = U/e,, (3% b) 

where 0, = ( g k , ( l +  W / d ,  (324 
and k, is the viscous wavenumber. Viscosity decreases wavelengths in our 
experiments ; thus, the actual (viscous) wavenumber is larger than its inviscid 
counterpart in (1) .  (The wavetrain's frequency w = 2nf is fixed by the wavemaker 
motion.) The viscous wavenumber is found from the viscous dispersion relation 

2nf = 0,- yy.  (33) 
Once k, is determined from (33), the damping coefficient and its e-folding distance can 
be found; results are shown in table 1. Note that the largest viscous increase in 
wavenumber is 0.09 rad/cm, which is about 1 % of the inviscid value and smaller 
than our measurement resolution (0.284 rad/cm, see $3.2). Hence, viscous effects on 
dispersion are not expected to be important in the experiments. The e-folding 
distances listed in table 1 correspond to about ten wavelengths for each experimental 
frequency. Since the locations of our wavenumber measurements are about one or 
two e-folding distances downstream of the wavemaker, viscous attenuation of wave 
amplitudes is expected to be important in the experiments. 

Miles (1984) noted that the consequences of weak (linear) viscous effects, such as 
those described above, are incorporated into nonlinear evolution equations for the 
envelope amplitude by letting 

a p t  + a p t  + s,, a/ax + a/ax + s2, (34% b) 
in the inviscid NLS equations (14a) and (21a), respectively. The damping rates 
in (34) are given by 

The viscous nonlinear Schrodinger equations become 
6, = Y"/% 4 = y , / U k .  (35% b) 

i4,+i8,A+,dyy = xIAI'A, iA,+idzA+,L4,, = iIAlZA. (36a, b)  

Repeating the linear stability analyses of Hasimoto & Ono (1972) using (36a, b )  and 
using (34a, b)  in the evolution equations that are obtained for the perturbations, we 
find that the bandwidths of unstable (viscous) wavenumbers are reduced according 
to 

"( 1 - (1 - s;/y;)i) < lK,l < @2( 1 + (1 - s?/v;) i ) ,  
@2( 1 - (1  - s;/r;)h) < Iq,I < %Z( 1 + (1 - &;/I-;):). 

(37 4 
(37 b) 

Hence, only those modulations with wavenumbers in the inviscid bands of (16a) and 
(23a) having inviscid growth rates exceeding the viscous damping rates can amplify. 
In  addition, the amplitude of the primary wavetrain must exceed a minimum 
(threshold) value before modulations amplify. The threshold amplitudes cor- 
responding to longitudinal and transverse modulations are 
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These threshold amplitudes are shown in table 1 for each of our experimental 
wavetrains that is predicted to be unstable by the NLS equations. 

3. Experimental facilities, data analyses, lighting and image calibration 
The experimental facilities consist of the following : (i) wave tank, (ii) wavemaker, 

(iii) wave gauge, (iv) water supply and filters, (v) computer, and (vi) high-speed 
imaging system. Items (i)-(iv) were described in detail by Henderson & Lee (1986) 
and Henderson & Hammack (1987, Part 1)  ; therefore, the descriptions herein are 
brief. Item (v) was described in detail and item (vi) was described briefly by Perlin 
et al. (1990, Part 2). Here we describe the imaging system and image calibration 
techniques more thoroughly. We also describe our algorithms for calculating 
frequency spectra from temporal wave gauge data and two-dimensional wavenumber 
spectra from spatial images. 

A schematic drawing of the wave tank and other apparatus is shown in figure 3. 
The wave tank is 91 cm wide, 183 cm long, and 15 cm deep ; it has tempered glass 
sidewalls and bottom, which are in an aluminium frame with aluminium endwalls. 
This frame also supports a positioning system for an instrument carriage over the 
tank. A sheet of white Plexiglas is attached to the underside of the glass bottom. The 
tank is supported by a steel frame that rests on vibration-isolation pads. Temporary 
wave guides, made of (wetted) aluminium, are set into the tank to create a wave 
channel whose breadth is 30.5 cm and length is 91 cm. 

A wavemaker is located at  one end of the wave channel. The paddle is supported 
by an electrodynamical shaker, which is connected to a steel frame that straddles the 
wave tank and is attached to the laboratory floor through isolation pads (see figure 
3). The paddle is an aluminium right-angled wedge that spans the wave channel ; its 
cross-section has a height of 0.90 cm and width of 0.44 cm as shown by the inset of 
figure 3(a). For an experiment, the paddle is immersed 0.24 cm in the water and 
oscillates vertically about this position with a stroke amplitude s, which is listed in 
table 2 for each experiment. (It is crucial for experimental repeatability that the 
immersion depth of the paddle be maintained.) An eddy-current displacement 
transducer measures the vertical motion of the paddle and provides position 
feedback to a servo-controller, which compares the feedback with the command 
signal for desired paddle motion and provides an appropriate drive signal to the 
electrodynamical shaker. 

A capacitance wave gauge is used to measure the water surface elevation as a 
function of time at a fixed location in the wave channel. The water-penetrating probe 
is a sealed glass tube, which encloses a conductor; the tube’s diameter is 1.17 mm. 
The gauge’s frequency response remains constant until about 30 Hz and attenuates 
thereafter. Dynamical calibrations of the gauge are performed as described in Part 
1.  

The water supply contains about 80 gal. of doubly distilled water stored in two 
closed polyethylene crocks that are connected to the wave tank and a filtration 
system by PVC piping and valves, and by Tygon tubing. The Sybron filtration 
system includes a 0.2 pm particle filter, a carbon-absorption filter, and an organics 
filter. Water is gravity-fed into the wave tank before experiments to a depth of 
4.92 cm, which is established using a point gauge (see figure 3). Afterwards, the water 
is pumped through the filtration system and into the storage crocks. Our procedures 
consistently produce a water surface in the tank whose static surface tension, 
measured by a Du Nouy tensiometer, is 73 dyn/cm. 
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FIQURE 3. Schematic drawing of the wave tank showing the laboratory coordinate system and 
other apparatus. (a) Plan view. ( b )  Elevation view. 

3.1. Computer and high-speed imaging systems 
The computer system is a 32-bit DEC (Digital Equipment Corporation) VAXstation 
I1 equipped with 527 Mbytes of disk storage. The computer’s 12-bit analog-output 
(AAV11-DA) system provides command signals for the wavemaker and for the 
dynamical calibration of the wave gauge. All sinusoidal command signals are 
constructed from a 2500 Hz digital output. The computer’s analog-input (ADV11- 
DA) system acquires data from the wave gauge, feedback, and command signals. The 
analog-input and -output devices are supported by separate, programmable real- 
time clocks. Software control for these devices is provided by Signal Technology’s 
Interactive Laboratory System and DEC’s Labstar. The VAXstation I1 is connected 
to the computer of the high-speed imagining system through an RS-232 
communication interface. 

The Kodak Ektapro lo00 is a computer-based, high-speed video system that 
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provides digital images from analog signals recorded a t  rates of 3CL1000 f.p.s. 
(frames per second). The analog signals comprising a frame are generated by an 
imager that measures light intensities using an NMOS array of 192 (rows) x 240 
(columns) pixels. (Light intensities are shown to be related to wave amplitudes in 
$ 3.3.) Imager measurements are converted to FM (frequency-modulated) signals and 
recorded on instrumentation tape. During play-back, the FM signals are demo- 
dulated and sampled by an A/D (analog/digital) converter that provides digital 
images a t  a rate of 30 f.p.s. ; light intensity a t  a pixel site is resolved by 256 grey 
levels. Digital video signals are stored in a frame buffer that can be displayed on a 
system monitor and/or downloaded to a standard video recorder. Each data frame 
is surrounded by a border that contains the frame number and other recording 
information ; jogging among frames allows us to repeatedly access specific frames. 
For the experiments reported herein, the imager is located above the wave channel 
as indicated in figure 3(a). The focal plane of the imager is parallel to, and 1.5 m 
above the water surface ; a 25 mm TV lens is used. Examples of two frames from the 
experiments, as viewed on a video monitor, are shown in figure 4. The f i s t  frame 
shows a quiescent water surface within the wave channel, which is inclined at  45' 
across the frame. (The black, square border superposed on the wave channel and the 
reason for inclining the imager relative to the channel axes will be discussed in $3.2.) 
The second frame in figure 4(b) shows the wave channel with an 8 Hz wavetrain 
(experiment GC0806); crests and troughs appear as light and dark bands, 
respectively. (A detailed description of video images is presented in $3.3.) Digital 
images can be transferred from the frame buffer of the Ektapro 1000 through a 
communication interface to the VAXstation I1 computer system using the Ektapro's 
command language. This communication link and language also allow the imaging 
system to be controlled by the VAXstation 11. 

3.2. Data analyses 
During an experiment, we monitor the wave gauge, command, and feedback signals; 
herein, only data from the wave gauge are reported. Continuous-time signals from 
the wave gauge are low-pass (Butterworth) filtered with a cutoff frequency of 
100 Hz, amplified 20 dB, high-pass filtered with a cutoff frequency of 1 Hz, amplified 
another 20 dB, and then sampled a t  a rate of 250 Hz. (A 20 dB amplification 
corresponds to a factor of 10; in general, log(factor) = (dB/20)). The sampling 
interval is 65.532 s, which yields 214 (or 16384) samples in a digital time series. An 
amplitude-frequency spectrum is computed using an FFT (fast Fourier transform) 
algorithm from the ILS software; frequency resolution is 0.01526Hz and the 
Nyquist frequency is 125 Hz. Spectral amplitudes are presented in arbitrarily scaled 
units of dB. 

Before an experiment, a short sequence of frames showing the quiescent water 
surface is recorded. Then the wavemaker is started, and, after 40 s, a recording of the 
wave field is begun ; a framing rate of 125 f.p.s. is used for all experiments herein. One 
frame of the quiescent water surface and one frame of the wave field are then chosen 
for processing. From these frames, a 2' x 2' pixel array, which corresponds to the 
(22 x 22) cm surface area outlined by the square black border superposed on the 
image in figure 4(a), is analysed. The row and column spacing between pixels in this 
array is 0.174 cm; this spacing was measured using the imager reticle and viewing 
scales, which were supported at the level of the water surface. Grey level 
measurements from the image of the quiescent water surface are then subtracted 
from those at corresponding pixel sites in the wave field image. The resulting grey 
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FIGURE 4. Overhead images of the wave channel viewed on the video monitor. (a) Quiescent wdter 
surface with superposed black square border showing spatial sampling region; (b )  8 Hz wavetrain 
from experiment GC0806. Light bands &re wave crests; dark bands are wave trough& 

levels, which spanned 225 of the possible 256 in some experiments, are not affected 
by variations in the background lighting within an image (see $3.3) or differences in 
response among imager sensors. A mean value of grey levels is then computed and 
subtracted from each pixel site. A two-dimensional amplitude-wavenumber spectrum 
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FIQURE 5. Perspective views and contour maps of two-9mensional wavenumber spectra for ana- 
lytical sine waves: (a) f =  25 Hz, f = 6.3?5 rad/cm, B = 42'; ( b )  f =  25 Hz, f = 6.325 rad/cm, 
6 = 45'; (c) f =  25 Hz, f = 6.325 rad/cm, 8 = 48'; (d) f = 24.4 Hz, = 6.200 rad/cm, 6 = 45". 
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is computed from the resulting array of grey levels using a two-dimensional FFT 
algorithm from the Labstar software. The wavenumber resolution in this spectrum 
is 0.284 rad/cm and the Nyquist wavenumber is 18.055 rad/cm, which, according to 
(l) ,  corresponds to a 106.5 Hz wavetrain. Spectral amplitudes are presented in 
arbitrarily scaled units. We note that low-pass filtering of signals representing the 
spatial image is not possible - the image signal is discrete space ab initio. However, 
the lighting of the image appears to eliminate high wavenumbers, and we observed 
no evidence of aliasing in the computed wavenumber spectra. We also note that 
spatial data and wave gauge data are not obtained simultaneously, since the 
supporting apparatus of the wave gauge interferes with the lighting and viewing of 
the water surface. Hence, the control and reproducibility of our experiments are 
essential. 

There are two other aspects of the two-dimensional wavenumber spectra that 
should be mentioned. First, the FFT algorithm automatically folds amplitudes for 
negative wavenumbers ( - I ,  - m )  into the positive quadrant of wavenumber space ; 
hence, information on wave-vector directions is restricted to 0-90'. In order to 
obtain information on waves propagating in the - m  and + m  directions, we rotated 
the imager to an angle of (about) 45', as shown in figure 4 (a)  ; hence, wave directions 
within &45' of the ch$nne14 axis are resolved. Wave vectors in the rotated 
coordinates are denoted k = ( I ,  A). Secondly, the two-dimensional FFT algorithm 
produces results using analytical sine waves that should be demonstrated before 
examining experimental data. Figure 5 presents perspective views and contour maps 
of the wavenumber spectrum for four simulations using analytical sine waves that 
were discretized and processed as in the experiments. The first three simulations use 
a sine wave with k = 6.325 rad/cm, which corresponds to, a 25 Hz wavetrain 
according to (1).  These wavetrains are directed at  angles 0 that correspond to 
propagation in and near the direction of the channel axis (45'). The fourth simulation 
slightly decreases the wavenumber of the sine wave, and directs it along the channel 
axis. While all of the spectra are dominated by a peak at  the input wavenumber and 
angle, there is a tendency for$he spectral amplitude not to diminish to zero away 
from the peak in either the I ,  A, or both directions. Instead, a nearly constant 
amplitude is reached that persists and leads to elongated contours in the axial 
directions away from the peak. This phenomenon does not result from the finite 
extent of the rectangular spatial window used in our sampling ; it also resulted when 
we used a 10% cosine (Hanning) window (e.g. see Childers & Durling 1975, p. 290). 
When this phenomenon occurs in both axial directions, as in figure 5 (d ) ,  amplitude 
contours of the spectrum resemble a hypocycloid of four cusps. No physical 
significance should be assigned to this shape when it is evident in experimental 
results. 

3.3. Lighting and image calibration 
After much trial and error, we adopted a lighting configuration as shown in figure 3. 
Two 600 W halogen lights in reflector housings are positioned at  the downstream end 
of the wave tank astride the axis of the wave channel and about 60 cm above the 
water surface. (The wavemaker paddle is located 1.4 m from the downstream tank 
endwall.) The lights are aimed at  the imaged area so that the incident light forms an 
angle of about 32' with the normal to the water surface. The opaque (white) Plexiglas 
located on the underside of the tank bottom provides reflected diffuse light that is 
measured by the imager over the wave channel. This diffuse light is refracted by the 
deformed water surface so that wave crests and troughs appear in the images as light 
and dark bands, respectively. Figure 6 presents quantitative evidence that the 
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FIGURE 6. Variation of normalized average light intensity at the imager site with incident-light 
angle: (a )  *, computed from imager data; ( b )  0 ,  measured using Wolensak exposure meter. 

images are formed by diffuse, rather than specular, light. There the average light 
intensity at the imager site, normalized by the maximum value, is shown as a 
function of incident angle of light for a quiescent water surface. One data set was 
obtained with the imager ; a single frame was transferred to the VAXstation I1 and 
the average intensity among pixel sites was computed. The second data set was 
obtained by direct measurements of light intensity using a Wolensak exposure meter 
a t  the imager site. Both data sets yield similar results. The maximum intensity 
occurs for an incidence angle of about 32", which is used in the experiments. There 
is a gradual reduction in light intensity as the incidence angle changes from 32"; this 
behaviour is characteristic of a diffuse light source. We note that light glitter, which 
results from light reflected directly from the water surface, may appear occasionally 
in an image. This glitter is easily removed (or moved) from the sampling region, prior 
to recording, by slight adjustments in the incidence angle of light. We also note that 
as wave amplitudes increase, images appear blurred in the vicinity of the wavemaker. 
(The origin of this blur, which is visible to  the unaided eye, is not known at the 
present time.) The position (x' = : x:, y' = 0) of the upstream corner of the spatial 
sampling area (see figure 4 a )  is chosen sufficiently far downstream to circumvent this 
phenomenon. 

Various techniques were used to compare grey levels at pixel sites with wave 
amplitudes and to compare the distribution of grey levels among sites with surface 
lengthscales. First, we imaged and analysed black and white drawings, with known 
wavenumber spectra. Secondly, we numerically superposed a variety of wave fields 
that were composed of sinusoidal wavetrains whose amplitudes and wave vectors 
were known. The resulting amplitudes of the wave field were assigned grey levels in 
the range 0-255, which corresponded to  the minimum and maximum amplitudes, 
respectively. This image was printed on white paper, imaged, and analysed. In  all of 
these tests, the calculated spectra faithfully reproduced the known spectra of the 
input patterns. 
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FIGURE 7. Amplitude-frequency spectra of a 17 Hz wavetrain (GC1704) calculated from time series 

measured simultaneously by (a) a wave gauge, ( b )  the imager at a nearby pixel site. 

In order to compare grey levels with wave amplitudes at a pixel site, an 
experiment was conducted using a 17Hz wavetrain (GC1704) and a wave gauge 
located in the spatial sampling region. In this experiment (only) we made 
simultaneous measurements with the imager and wave gauge. The imager operated 
at 250 f.p.s., which equalled the 250 Hz sampling rate of the continuous-time signal 
from the wave gauge. A digital record of 21° samples from the digital signal at a pixel 
site, which was 0.87 cm (laterally) from the wave gauge, was compared with a 
corresponding record from the wave gauge. (The gauge support precluded using 
smaller separation distances.) Figure 7 presents the resulting amplitude-frequency 
spectra. The two distributions of spectral amplitudes are similar, except at higher 
frequencies (>50 Hz) where grey levels show the presence of third and higher 
harmonics of the 17 Hz wavetrain that are not present in the wave gauge signal. We 
suspect that these differences at high frequencies result from distortions by both 
measurement devices. As noted earlier, the wave gauge response is constant to 
30 Hz ; thereafter, signals are attenuated. Hence, the wave gauge underestimates the 
amplitudes of higher harmonics. Our lighting of the wavefield causes sinusoidal 
waves to have a square-wave appearance in the form of light and dark bands as seen 
in figure 4. This square-wave appearance leads to over estimates for the amplitudes 
of higher harmonics. In order to gain insight into the overall similarity between the 
wave gauge and imager measurements of wave amplitudes, we computed the linear 
correlation coefficient between the two digital signals ; the resulting value was 0.89. 
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Hence, grey levels a t  a pixel site are reasonable measures of wave amplitudes. 
Herein, we are mainly interested in wavenumbers, which are obtained from the 
distribution of wave amplitudes within a single spatial image ; hence, no effort was 
made in these first experiments to establish an absolute calibration between grey 
level and dimensional wave amplitude. 

4. Presentation of experimental and theoretical results 
Experimental data are presented for wavetrains with 0.29 < r < 2.98, which 

correspond to frequencies of 8-25 Hz on clean, deep water, i.e. T = 73 dyn/cm and 
kh % 1. First, we describe the observed temporal evolution of modulationally 
unstable wavetrains. Secondly, we compare experimental data and theoretical 
predictions for wavetrains with 0.5 < T < 2.0, where resonant triad interactions are 
not possible. Thirdly, we compare experimental data and theoretical predictions for 
wavetrains with r > 2.0, where resonant triad interactions are possible. Lastly, we 
present experimental data for Wilton n = 2 , 3  ripples, and wavetrains with 0.155 < 
r < 0.50. 

I n  comparing experimental results and theoretical predictions, we note that the 
experiments use a water surface of finite extent, whereas the theoretical models use 
a water surface of infinite extent. This finite size of the experiments limits the 
modulational wavenumbers to countable families with minimum values K~~ k = 
0.035 rad/cm and qmin k = 0.103 rad/cm in the longitudinal and transverse dir- 
ections, respectively. (These values are based on the channel’s length of 91 cm and 
breadth of 30.5 cm.) 

4.1. Temporal evolution of modulationally unstable wavetrains 
In  order to show typical temporal behaviour of experimental wavetrains in the 
modulationally unstable band (7 > 0.5), we present 131 s wave-gauge record in figure 
8 from experiments GC1702 and GC1706. These records were obtained by a wave 
gauge a t  (x’, y’) = (x; = 23, -4.7) cm. The 17 Hz wavetrains in these experiments 
had steepnesses of e := ka, = 0.08 in GC1702, which is the least nonlinear experiment, 
and E = 0.31 in GC1706, which is the most nonlinear experiment (see table 1) .  A 
comparison ‘between the measured amplitudes in these experiments (table 3) and the 
viscous-threshold values (table 1)  suggests that experiment GC1702 is stable and 
experiment GC1706 is marginally unstable. A compressed timescale is used in order 
to emphasize the wave envelope, rather than individual waves, and the time axes are 
arbitrarily shifted in order to  show about 16 s of ‘quiescent’ water surface prior to  
the arrival of the wavetrain. The wave activity during this quiescent time is the 
ubiquitous background noise that was described in Part  2. This noise, which is 
mainly electrical, is broadbanded, and in experiment GC1702, its amplitude is 
comparable to  that of the generated wavetrain. Nevertheless, the spectral analysis 
has no difficulty extracting the signature of the generated wavetrain. Additional 
wave noise is generated during an experiment by irregular contact-line motion on the 
wavemaker paddle and channel sidewalls. No artificial background waves are added 
in these experiments. 

In  each of the experiments shown in figure 8, a growth period of about 15s  
occurred after the arrival of the wavetrain before its envelope reached a maximum, 
quasi-steady amplitude. This behaviour is masked somewhat in experiment GC1706 
by persistent long-time variability, which we discuss below. These growth periods 
cannot be attributed either to wavefronts that result from speed differences between 



4 

3 -  

2 -  
7 

(mm) 1 

0 

- 1  

-2  

25 1 

I I 1 I I I I 

- 

- 
I I I I I I I 

-2  ' I I I I 1 I I 

0 20 40 60 80 100 120 140 
t' 6)  

FIGURE 8. Temporal measurements by a wave gauge at (r',y') = (rf = 23, -4.7) cm: 
(a) experiment GC1702 ; ( b )  experiment GC1706. 

wave energy and wave phase or to transient waves generated during the start-up of 
the wavemaker. (The minimum energy speed among all wavetrains is U = 17.8 cm/s, 
which occurs for f = 6.4 Hz (7 = 0.155), and the minimum phase speed is 23.2 cm/s, 
which occurs for f =  13.6 Hz (7 = l).) We believe they are related to multiple 
reflections of the generated wavetrain at the end of the 91 cm channel, which opens 
into the larger basin. (Experiments with shorter channel lengths were inconclusive.) 
If so, the wavefield in the channel contains some standing waves, which are masked 
by the unstable behaviour of the progressing wavetrain. 

Even after the initial growth period in experiment GC1706 of figure 8 ( b ) ,  
considerable envelope variability persists that cannot be attributed to naturally 
occurring background waves - amplitude changes by a factor of two are observed. 
These large-amplitude modulational cycles generally occur over hundreds of wave 
periods, which is much longer than our third-order NLS equations are expected to 
remain applicable. There is some variability on the shorter timescale that is 
appropriate to NLS equations, i.e. t' - 2151~s~ x 1s ; however, most of this variability 
is within the background noise level. Since this long-time variability increases with 
increasing steepness of the wavetrain, we believe that it results from weaker 
nonlinear interactions, such as (non-degenerate) resonant quartets, resonant 
quintets, etc., and resonant triads when 7 > 2.0. 

Observations of the water surface indicate that the persistent long-time 
unsteadiness in figure 8(b )  is manifest by to-and-fro meandering of striations, i.e. of 
envelope nodal lines (see 52.2.2 and Part 1 ) .  The effect of this meandering pattern on 
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FIQURE 9. Temporal evolution of two-dimensional wavenumber spectra for experiment GC 1706. 
Spectra are at a time, At’, after the wavetrain reached the spatial sampling region, and contain ten 
amplitude contours at  equally spaced intervals to  their maximum spectral amplitude, d (in 
arbitrary units): (a) At’ x 10 s, d = 19.1; ( b )  At’ x 20 s, d = 23.4; (c) At’ x 30 s ,  d = 29.9; 
( d )  At’ x 40 s ,  d = 27.6; (e) A t ’ x  50s,  d = 27.6; (f) At’ x 60 s ,  d = 23.4; (9) At’ x 80 s ,  
d = 24.5; (h)  At‘ x 110 s ,  d = 23.8. 
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FIQURE 10. Temporal wave measurements by a wave gauge at (d, y‘) = (5.0, -4.7) cm for 

experiment GC1706. 

Experiment 
GC2502 
GC2503 
GC2504 
GC1702 
GC 1704 
GC1706 
GC 1305 
GC 1306 
GC9802 
GC9810 
GCO806 

f (Hz) 
25 
25 
25 
17 
17 
17 
13.6 
13.6 
9.8 
9.8 
8.0 

8 (mm) 
0.20 
0.30 
0.40 
0.20 
0.40 
0.60 
0.50 
0.60 
0.20 
1 .oo 
0.60 

xi (cm 
23 
23 
23 
23 
23 
23 
37 
37 
23 
23 
23 

) aot (om) 
0.018 
0.028 
0.027 
0.017 
0.048 
0.068 
0.047 
0.059 
0.015 
0.096 
0.058 

ka0 

0.114 
0.176 
0.171 
0.078 
0.219 
0.311 
0.174 
0.216 
0.039 
0.249 
0.1 16 

?a, was measured at (d,y’) = (5, -4.7) cm. 

TABLE 2. Experimental parameters. h = 4.92 cm, T = 73 dyn/cm, b = 30.5 cm. 

spatial measurements is shown in figure 9 by a sequence of measured, two- 
dimensional, wavenumber spectra that were obtained during experiment GC1706 at 
various times (At’) after the wavetrain reached the spatial sarnpling region. Each 
spectrum is shown in the rotated wave-vector space, i.e. k = (Z,h), with ten 
amplitude contours up to the maximum spectral amplitude, which is listed in 
arbitrary units. The first spectrum of figure 9(a)  (At’ x 10 s) shows a spike that 
corresponds to the 17 Hz wavetrain. There is evidence of the hypocycloid shape, 
which is not physical (see $3.2), second-harmonic generation, which is probably 
physical (see $3.3), and slight amplification of oblique waves in a transverse 
modulational band, which is physical. The second spectrum of figure 9 (b) (At’ x 20 s )  
shows continued amplification of the 17 Hz wavetrain, its second harmonic, and 
oblique waves in the transverse modulational band ; the hypocycloid shape has 
disappeared. The third spectrum of figure 9(c) ( A t ’ x  30s) shows the first 
amplification of collinear waves with a lower wavenumber magnitude than that of 
the 17 Hz wavetrain. The fourth spectrum of figure 9 ( d )  (At’ x 40 s )  shows the 
continued amplification of oblique waves in the transverse modulational band, the 
emergence of dominant transverse wavenumbers, and the continued amplification of 
collinear waves in the longitudinal modulational band. This spectrum is rep- 
resentative of the quasi-steady conditions in the subsequent spectra. Oblique 
wavetrains in the transverse modulational band persist ; in fact, their amplitudes 

9-2 
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become sufficiently large to generate second harmonics, e.g. see figure 9 (f ). Collinear 
wavetrains in longitudinal modulational bands are less persistent ; in fact, most 
exhibit growth-decay cycles, although one dominant wavetrain is always present. 
The spectral amplitude of the 17 Hz wavetrain varies about 10% during this quasi- 
steady evolution. We note that these spatial data take longer than temporal data to 
reach the quasi-steady condition ; this result is explained subsequently. 

The initial growth periods, the long-time variability of envelope amplitudes in our 
more nonlinear experiments, and viscous damping make it difficult to obtain the 
wavetrain amplitude a, from downstream measurements. In order to circumvent this 
difficulty, we routinely made 65 s time-series measurements upstream at (x’, y’) = (5, 
-4.7) cm. These measurements, which were recorded after the initial growth 
periods, were nearly uniform in amplitude, as illustrated in figure 10 for experiment 
GC1706. The average amplitude from each of these records was measured; results are 
listed in table 2, which also shows other measurements from our experiments. 

4.2. Experimental and theoretical results for wavetrains with r > 0.5 
The inviscid, uncoupled NLS equations (14) and (21) indicate that ripple wavetrains 
with 7 > 0.5 are unstable to both longitudinal and transverse modulations, and that 
both modulations should amplify at about the same spatial rate. Here we compare 
experimental results with the theoretical predictions of these equations that are 
summarized in table 3. In this comparison we also account for the effects of weak 
viscosity that are summarized in table 1.  

4.2.1. Wavetrains with 0.5 < r < 2.0 
For ripple wavetrains with 0.5 < 7 < 2.0, which correspond to 9.8 c f c 19.6 Hz, 

resonant quartet interactions can occur but resonant triads cannot (see Parts 1 and 
2) ; hence, these wavetrains are most appropriate for comparison with predictions of 
the NLS equations. 

Figure 11 shows temporal data from three experiments with 17 Hz wavetrains 
whose initial amplitudes were varied. The wave-gauge time series in column ( d ) ,  
which were recorded at (x‘, y’) = (x:, -4.7 cm), show that the long-time variability 
of the envelope amplitude increases with the wavetrain’s amplitude. The frequency 
spectra in column ( e )  show a corresponding increase in the number and amplitudes 
of superharmonic wavetrains. The frequency spectra indicate that wavetrains with 
modulational frequencies did not amplify in these experiments ; no significant growth 
of frequency sidebands is evident in either spectrum. The absence of sideband 
instabilities in the frequency spectra is not surprising in experiments (321702 and 
GC1704, since the amplitudes of both wavetrains were below the viscous-threshold 
values. However, modulational instabilities did occur in experiment GC1706 as 
shown in figure 9 ;  hence, it is surprising that no sideband growth occurred in its 
frequency spectrum. In fact, modulational instabilities also occurred in experiment 
GC1704, as we now show. 

Figure 12 shows experimental and inviscid, theoretical spatial data in rows (a)-(c) 
for the three 17 Hz experiments of figure 11. Column ( d )  shows water-surface images ; 
column ( e )  shows the corresponding two-dimensional wavenumber spectra ; and 
column ( f )  shows the theoretical predictions that include the bands of unstable 
transverse ( -Qk < q < Qk) and longitudinal ( -Kk < K < Kk) wavenumbers, the 
most unstable wavenumbers f q , k  and + ~ , k ,  and quarter of a circle that 
represents the isotropic dispersion relation (1) ,  with k2 = Z2+rii2 , for a 17Hz 
wavetrain. The wavenumber spectra in column ( e )  are normalized by the spectral 
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BF longitudinal instability BF transverse instability 

3 

merit (memured) f~, (rad/cm) (em) (rad/cm) 10sym (em) +qm (rad/cm) (em) (rad/cm) 1oSr, (cm) (deg) 
GC1702 
GC1704 
GC1706 
GC1305 
GC1306 
GC2502 
GC2503 
GC2504 

0.062 
0.175 
0.248 
0.123 
0.155 
0.114 
0.177 
0.170 

0.062 0.283 
0.176 0.803 
0.250 1.141 
0.209 0.772 
0.262 0.968 
0.065 0.411 
0.101 0.639 
0.097 0.614 

22.0 
7.8 
5.5 
8.2 
6.5 

15.3 
9.9 

10.2 

0.403 
1.139 
1.613 
1 .ow 
1.368 
0.579 
0.901 
0.869 

1.86 
14.82 
29.73 
15.57 
24.54 
2.87 
6.95 
6.46 

209 
26 
13 
25 
16 

137 
57 
61 

0.043 
0.121 
0.171 
0.141 
0.178 
0.043 
0.068 
0.065 

0.196 
0.552 
0.780 
0.521 
0.658 
0.272 
0.430 
0.41 1 

32.3 
11.4 
8.1 

12.0 
9.6 

22.9 
14.7 
15.2 

0.275 
0.778 
1.101 
0.739 
0.927 
0.389 
0.605 
0.583 

0.91 
7.25 

14.56 
10.00 
15.75 
0.95 
2.29 
2.13 

241 
30 
15 
27 
17 

167 
69 
74 

s 
3.5 3 

9.7 6- 
13.6 
11.3 
14.1 8 
3.5 
5.5 % e. 

5.3 g. 
TABLE 3. Summary of (inviscid) theoretical results for unstable transverse and longitudinal modulations, based on measured wavetrain amplitude ' 
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FIGURE 11 .  Temporal data for experiments with 17 Hz wavetrains: (d, y') = (5.0, -4.7) cm. Row 
(a )  experiment GC1702; row ( b )  experiment GC1704; row (c) experiment GC1706; column (d )  wave- 
gauge measurements ; column (e) amplitude-frequency spectra. 

amplitude of the 17 Hz wavetrain with the largest spectral amplitude (GC1704); 
hence, the contour interval is the same for each spectrum. The theoretical bands of 
unstable wavenumbers in column (f) are centred about the theoretical location of a 
17 Hz wavetrain, which is directed a t  the observed angle in the experiment ; a band 
thickness of 0.284 rad/cm, which corresponds to our measurement resolution, is 
used. 

In  the least nonlinear experiment (GC1702, E = 0.078) of figure 12, row (a), the 
water-surface image shows a one-dimensional wave pattern. Spectral amplitudes for 
this image are concentrated in a small region of wavenumbers that corresponds to the 
17 Hz wavetrain ; the region has dimensions that are comparable to our wavenumber 
resolution. (Note the similarity between this spectrum and that of figure 5 ( b )  for an 
analytical sine wave.) Neither collinear nor transverse wavetrains with modulational 
wavenumbers have amplified, as expected, since the wavetrain's amplitude is 
substantially below the viscous-threshold values. 

In  the more nonlinear experiment (GC1704, e = 0.219) of figure 12, row (b ) ,  the 
water-surface image shows a wave pattern that is weakly two-dimensional ; slight 
'kinks' occur in wave crests. Spectral amplitudes for this image are concentrated in 
wavenumber regions that correspond to the 17 Hz wavetrain, its second-harmonic, 
and oblique wavetrains with modulational wavenumbers in a transverse band about 
the 17 Hz wavetrain. (The vertical elongation of amplitude contours is an artifact of 
the numerical algorithm, see $3.2.)  The measured bandwidth agrees well with the 
predicted (inviscid) bandwidth Qk, and a dominant oblique wavetrain is emerging 
whose modulational wavenumber agrees well with the predicted -qm k. The 
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FIGURE 12. Spatial data for experiments with 17 Hz wavetrains. Row (a) experiment GC1702 ; row 
( b )  experiment GC1704; row (c) experiment GC1706; column (d )  water surface images; column (e) 
measured two-dimensional wavenumber spectra ; column (f ) predicted (inviscid) bands of unstable 
waves (large cross-shapes), and -, the dispersion relation, for a 17 Hz wavetrain. 

measured spectrum shows the amplification of one collinear wavetrain whose 
modulational wavenumber is slightly larger than the predicted - K ,  k. The e-folding 
distances for both modulational instabilities are comparable to the distance to the 
spatial sampling region, and to the e-folding distance for viscous damping. Note that 
these modulational instabilities have occurred even though the wavetrain's 
amplitude is below the viscous-threshold values. 

In the most nonlinear experiment (GC1706, B = 0.311) of figure 12, row (c), the 
wave pattern is two-dimensional ; striations criss-cross the channel ; and the 
alternating light and dark bands across a striation indicate that 180' phase jumps 
occurred. (The amplitude of this wavetrain is about equal to the viscous-threshold 
values.) Spectral amplitudes for this image are concentrated in wavenumber regions 
that correspond to the 17 Hz wavetrain, its second-harmonic, and oblique wavetrains 
with rnodulational wavenumbers in a transverse band about the 17 Hz wavetrain. 
There is asymmetry in the development of the transverse band; most amplification 
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occurred for modulations with q > 0. However, symmetric ( f q )  development was 
observed in other experiments, e.g. see figure 11, so this asymmetry is probably 
inconsequential. (Whether wavetrains with + q or -q  modulations amplify depends 
on the naturally occurring background waves, which differ between experiments, and 
on the channel sidewalls, which eventually enforce symmetry in the spectrum 
through reflections.) The measured transverse bandwidth exceeds the predicted 
(inviscid) +Qk, and it forms an arc that is coincident with the dispersion-relation 
circle for the 17 Hz wavetrain. There is no experimental evidence that the predicted 
most-unstable transverse modulation, qm k = 0.780, was dominant ; hence, we should 
not expect striations in the wave pattern to be parallel to the channel axis. In fact, 
many of the striations have angles of 13, x 12O, which, according to (30), corresponds 
to a transverse wavenumber of qs k x 0.275 rad/cm and wavelength of 22.9 cm. The 
amplification of collinear wavetrains remains weak and concentrated in a dominant 
wavenumber that is less than the predicted - ~ ~ k .  We note that longitudinal 
modulations did develop more fully in other GC1706 experiments as shown in figure 
11, but they were always confined to K < 0. This asymmetry might be consequential, 
since it is consistent with experimental results for BF instabilities of gravity 
wavetrains (e.g. see Lake et al. 1977) in which the lower frequency, most unstable 
wavetrain dominates during long- time evolution. 

In  summary, the wavenumber spectra shows that 17 Hz wavetrains are most 
unstable to oblique wavetrains, and that these instabilities occur even when the 
wavetrain’s amplitude is below the viscous-threshold values. The frequency spectra 
indicate that the amplified, oblique wavetrains have the same frequency as the 
underlying wavetrain ; hence, the dominant instability in these experiments is a 
rhombus-quartet . 

Figure 13 shows experimental and theoretical results for experiment GC1305 in 
row ( a )  and experiment GC1306 in row ( b ) ;  both experiments used 13.6Hz 
wavetrains (7 = 1) whose amplitudes were about equal to the viscous-threshold 
values. The frequency spectra in column ( c )  show amplitude spikes a t  13.6 Hz and its 
superharmonics, but do not show amplification of wavetrains with modulational 
frequencies. Nevertheless, the spatial data in column ( d )  indicate pronounced 
amplification of wavetrains with transverse modulational wavenumbers ; the 
measured bandwidths exceed inviscid predictions, which are shown in column ( e ) .  
These bands also form arcs that coincide with the dispersion-relation circle for the 
13.6 Hz wavetrains. There is no indication that the predicted most-unstable 
transverse modulations were dominating in these experiments. Striations in the wave 
pattern of experiment GC1306 (not shown) have an angle of about 16O, which 
corresponds to a transverse wavenumber of qs k x 0.193 rad/cm and wavelength of 
32.6 cm. No amplification of collinear wavetrains in longitudinal modulational bands 
has occurred in either experiment. 

4.2.2. Wavetrains with 7 > 2.0 
Resonant triad interactions are possible for ripple wavetrains with 7 > 2.0, which 

corresponds to f > 19.6 Hz on clean, deep water. Parts 1 and 2 of this series examined 
resonant triad interactions in detail. In Part 2, it  was shown that specific triad(s) 
were selectively amplified from the continuum of possible triads when the 
background wave spectrum contained discrete components(s). It was also shown 
that all wavetrains in the continuum of possible triads were amplified when the 
background wave spectrum was broadbanded, as it is herein. Moreover, transverse 
modulational instabilities were crucial to both resonant-triad behaviours. 
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FIGURE 14. Temporal data for experiments with 25 Hz wavetrains. Row (a )  experiment GC2502; 
row ( b )  experiment GC2503; row (c) experiment GC2506; column (d )  wave-gauge measurements; 
column (e) amplitude-frequency spectra. 

Figure 14 shows temporal data from three experiments with 25 Hz wavetrains 
whose initial amplitudes were varied ; note that all of these amplitudes were 
significantly smaller than the viscous-threshold values. The data in figure 14 show 
that the long-time variability of the envelope amplitude increases with the 
wavetrain's amplitude. However, there is more short-time variability than in figure 
11 for the 17 Hz wavetrain, presumably in consequence of resonant triad interactions. 
The corresponding frequency spectra show that the number and amplitudes of 
superharmonics increase with the wavetrain's amplitude. No wavetrains with 
modulational frequencies have amplified ; however, oblique wavetrains with the 
same frequency as the underlying wavetrain have amplified, as shown in figure 15. 

Figure 15 shows experimental and inviscid, theoretical spatial data in rows (a)-(c) 
for the three 25 Hz experiments of figure 14. In the smallest-amplitude experiment, 
GC2502 of row (a),  the wave pattern is nearly one-dimensional, and, according to the 
measured wavenumber spectrum, neither collinear nor oblique wavetrains have 
amplified. (The vertical elongation of amplitude contours is an artifact of the 
numerical algorithm, see $3.2 and figure 5 c . )  This behaviour is consistent with 
viscous predictions, i.e. the predicted, inviscid bandwidths for modulational 
instabilities shown in figure 15 row (a) vanish. 

Wavetrain amplitudes increase in experiments GC2503 and GC2504, which are 
shown in figure 15, rows ( b )  and ( c ) ,  respectively, but remain significantly smaller 
than the viscous-threshold values. The amplitude in experiment GC2504 is slightly 
lower than in experiment GC2506, even though the wavemaker stroke is slightly 
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FIQURE 15. Spatial data for experiments with 25 Hz wavetrains. Row (a) experiment GC2502 ; row 
( b )  experiment GC2503; row (c) experiment GC2504; column (d )  water surface images; column (e) 
measured two-dimensional wavenumber spectra ; column (f) predicted (inviscid) bands of unstable 
waves (large cross-shapes), and -, the dispersion relation, for a 25 Hz wavetrain. 

larger. This behaviour was also observed in Part I, where it was conjectured that 
more energetic transfer of the wavetain’s energy to other wavetrains by resonant 
interactions might be responsible. The wave patterns shown in column ( d )  are two- 
dimensional ; some striations are wide and parallel to the channel axis, and no phase 
jumps occur across them. The measured wavenumber spectra in column ( e )  show 
pronounced amplification of oblique wavetrains in a band of transverse modulational 
wavenumbers. The measured bandwidth in experiment GC2504 greatly exceeds that 
in experiment GC2503 as well as the inviscid prediction, which is shown in column 
( e ) .  Wave energy has spread to a directional half-angle of 22O, rather than the 
(inviscid) prediction of 5.3O, which is shown in column (f). (Note that the 22’ angle 
is based on the first contour level; hence, this angle would increase if we used more 
contours.) The measured spectrum in experiment GC2503 shows amplification of 
only one collinear wavetrain whose modulational wavenumber is nearly twice the 
predicted - K, k. The measured spectrum in experiment GC2504 is unique among 
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FIGURE 16. Measured data for experiments with 9.8 Hz wavetrains. Row (a) experiment (329802 ; 
row ( b )  experiment GC9810 ; column (c) amplitude-frequency spectra ; column ( d )  wave-vector 
spectra. 

our experiments ; it shows amplification of a collinear wavetrain in the K > 0 portion 
of the longitudinal modulational band. The measured wavenumber is slightly less 
than the predicted + K, k. 

4.3. Experimental results for wavetrains with 0.155 < r < 0.5 
Wavetrains with 0.155 < r < 0.5, which correspond to 6.4 < f < 9.8 Hz, are stable to 
both longitudinal and transverse modulations, according to our uncoupled, third- 
order NLS equations. (In addition, Hogan (1985) showed that longitudinal 
modulations remain stable at  fourth-order.) At f = 9.8 Hz (Wilton n = 2 ripples) the 
NLS equations are no longer applicable owing to a singularity in one of their 
coefficients. In addition, four higher-order Wilton ripples are embedded within this 
frequency range; their frequencies are: n = 3, f = 8.4 Hz; n = 4, f = 7.5 Hz; n = 5 ,  
f = 7.0 Hz, and n = 6, f = 6.6 Hz. McGoldrick (1972) conducted experiments in the 
neighbourhoods of these frequencies, and found that all of these internal resonances 
were easily excited, even when detuned significantly from the theoretically resonant 
frequency. Here, we present experimental results (only) for 6.4 <f < 9.8 Hz. 

4.3.1. Wilton n = 2 ripples 
Figure 16 shows measured frequency and wavenumber spectra for two experiments 

with 9.8 Hz wavetrains whose initial amplitudes were varied. The wave steepness in 
experiment GC9802 is very small ( E  = 0.039) ; nevertheless, both the frequency and 
wavenumber spectra in row (a )  of figure 16 show significant amplitudes for the 
19.6Hz superharmonic wavetrain. There is no evidence that either oblique or 
collinear wavetrains have amplified. 
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FIGURE 17. Measured data for experiment GC0806 with an 8.0 Hz wavetrain: (a) amplitude- 
frequency spectrum ; ( b )  wave-vector spectrum. 

When the wave steepness is increased to E = 0.249 in experiment GC9810 of figure 
16, row (b), superharmonics of the 9.8 Hz wavetrain proliferate; five superharmonics 
appear in the frequency spectrum and two superharmonics appear in the 
wavenumber spectrum. In  addition, there is energetic amplification of oblique 
wavetrains in bands of transverse modulational wavenumbers for both the 9.8 and 
19.6 Hz wavetrains. There is no experimental evidence that collinear wavetrains 
with longitudinal modulational bands have amplified. Hence, the 9.8 Hz is unstable 
to oblique wavetrains in a band of transverse modulational wavenumbers, and after 
the second-harmonic wavetrain is amplified by internal resonance, it also becomes 
unstable to oblique wavetrains. 

4.3.2. The 8 Hz wavetrain and Wilton n = 3 ripples 
In order to examine the modulational stability of wavetrains with 6.4 < f < 

9.8 Hz, we conducted experiments using 8 Hz wavetrains. McGoldrick’s (1972) 
experiments found that third-harmonic resonance was excited down to 8.06 Hz while 
fourth-harmonic resonance was excited up to 7.94 Hz. Hence, 8 Hz is in the middle 
of a frequency range where wavetrain evolution might not be dominated by internal 
resonance - this was not the case. 

Figure 17 presents frequency and wavenumber spectra for experiment GC0806. 
Even though the wave steepness is fairly small ( E  = 0.116), the frequency spectrum 
in figure 16(a) shows several superharmonics, and the spectral amplitude of the 
third-harmonic (24 Hz) is larger than that of the second (16 Hz); hence, third- 
harmonic resonance has occurred. (We note that on clean, deep water, third- 
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harmonic resonance occurs when f = 8.37 Hz according to the inviscid, and f = 
8.39 Hz according to the viscous, dispersion relation.) The wavenumber spectrum in 
figure 17 ( b )  shows further evidence of third-harmonic resonance. (The water-surface 
image used to obtain this wavenumber spectrum is shown in figure 4b.) Amplitude 
contours that are centred about wavenumbers for the 8Hz  wavetrain show the 
hypocycloid shape, which is not physical (see 53.2); there is no evidence of 
modulational instabilities. Amplitude contours that are centred about wavenumbers 
for the 16 Hz second harmonic are localized and nearly circular. Amplitude contours 
that are centred about wavenumbers for the 24 Hz third harmonic form a narrow, 
transverse band that bends in an arc that is coincident with the dispersion circle for 
a 24 Hz wavetrain. No collinear wavetrains have amplified for either the 8 Hz or 
24 Hz wavetrains. 

5. Discussion and conclusions 
All of our experiments show that ripple wavetrains with r > 0.5 (f 2 9.8 Hz) and 

sensible amplitudes ( E  > 0.15) are unstable to transverse and longitudinal mod- 
ulations, i.e. resonant quartets of the Benjamin-Feir type. In addition, the 
experiments show that amplification of transverse modulations dominates amp- 
lification of longitudinal modulations. The absence of amplification of wavetrains 
with modulational frequencies in frequency spectra and the presence of amplification 
of oblique wavetrains with transverse modulational bands in two-dimensional 
wavenumber spectra indicate that ripple wavetrains are most unstable to oblique 
wavetrains with the same frequency, i.e. a rhombus-quartet instability, similar to the 
conjecture of Henderson (1986). This result is consistent with our observation that 
wave-vector spectra require longer than frequency spectra to become quasi-steady. 
Further evidence of the dominance of rhombus-quartet instability is seen in 
experimental wave-vector spectra where the transverse bands of amplified waves 
form arcs that are coincident with the dispersion-relation circle of the underlying 
wavetrain. The rhombus-quartet instability, which is the most-degenerate resonant 
quartet possible, remains dominant for wavetrains with r > 2, where resonant triad 
interactions occur - if the phenomenon of selective amplification does not occur (see 
Parts 1 and 2) ; even then, the rhombus-quartet instability plays a crucial role. These 
rhombus-quartet instabilities are robust ; they occur for wavetrains with amplitudes 
significantly below the expected viscous-threshold values, and their bandwidths 
sometimes exceed the inviscid predictions. 

Collinear wavetrains with longitudinal modulational wavenumbers also amplified 
in the experiments with r > 0.5, but more slowly than oblique wavetrains, and they 
were less persistent. Their amplification was more consistent with predictions that 
included the effects of viscosity. The apparent absence of modulational frequencies 
corresponding to these modulational wavenumbers is also indicative of the weakness 
of longitudinal instabilities, relative to the transverse modulations. Most of the 
collinear wavetrains that amplified appeared to undergo growth-decay cycles. In all 
but one experiment, amplification of collinear wavetrains was confined to negative 
modulational wavenumbers ; hence, the wave-vectors of the amplified waves have 
smaller magnitudes than that of the underlying wavetrain. This behaviour is 
consistent with the dominance of the lower sideband frequency observed in the 
evolution of gravity wavetrains. 

The occurrence of longitudinal and transverse modulational instabilities for ripple 
wavetrains with 7 > 0.5 is predicted by uncoupled NLS equations (14) and (21), 
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respectively ; however, these equations do not predict the dominance of rhombus- 
quartet instabilities. In addition, the inviscid NLS equation for the transverse 
instability typically underpredicts the measured bandwidth of unstable wave- 
numbers. The inviscid NLS equation for the longitudinal instability typically 
overpredicts the bandwidth of unstable wavenumbers, as expected when the inviscid 
results are modified to account for viscosity. Nevertheless, there is often good 
agreement between the predicted and measured most unstable (negative) longi- 
tudinal wavenumber. 

The observed dominance of instabilities by oblique perturbations during the 
evolution of ripple wavetrains with 7 > 0.5 is qualitatively consistent with numerical 
results of Chen I% Saffman (1985, e.g. their figure 3) for capillary wavetrains with 
moderate amplitudes. However, their results for BF (class I) and quintet (class 11) 
instabilities of capillary waves do not suggest the dominance of rhombus quartets. 

The numerical results of Zhang & Melville (1987, their figure 4 b )  include one case 
in which the underlying ripple wavetrain has 7 = 3.0 and e = 0.15, which are nearly 
equal to the parameters for experiments GC2503 and GC2504. Surprisingly, their 
results indicate that BF instabilities disappear for small transverse and longitudinal 
wavenumbers (whose dimensional values are smaller than our measurement 
resolution). BF instabilities do exist in a region of larger transverse and longitudinal 
wavenumbers, but there is no indication in their results that transverse modulations 
are dominant. 

Our experimental results for 7 > 0.5 do not provide evidence of bifurcations of 
ripple wavetrains ; however, the steepnesses of the experimental wavetrains were 
probably too small to expect bifurcations. (Zhang & Melville (1987) found a threshold 
steepness of e = 0.39 when 7 = 3.0 in order to obtain a neutrally stable perturbation.) 
Unfortunately, it is difficult to generate steeper wavetrains mechanically, since 
synchronous and subharmonic cross-waves are excited a t  the paddle (see Part 1). 

Our experiments indicate that ripple wavetrains with 0.155 < 7 < 0.5 (6.4 < f < 
9.8 Hz) are stable to transverse and longitudinal modulations, as predicted by NLS 
equations (14) and (21) and by the fourth-order NLS equation of Hogan (1985). 
However, our experiments, when combined with the results of McGoldrick (1972), 
also show that all wavetrain frequencies between those for Wilton n = 3 and n = 4 
ripples excite one of these internal resonances. Based on McGoldrick's more complete 
set of experiments, we suspect that the entire band of modulationally stable 
wavetrains is dominated by these internal resonances. In our experiment that 
excited Wilton n = 3 ripples, the third-harmonic wavetrain undergoes rhombus- 
quartet instabilities. In our experiment at the parametric boundary 7 = 0.5 
(f= 9.8 Hz), which corresponds to Wilton n = 2 ripples, we find that both the 
9.8 Hz wavetrain and the second-harmonic wavetrain undergo rhombus-quartet 
instabilities. 

6. Epilogue 
In this series of three experimental papers, we have examined the evolution of 

ripple wavetrains with small-to-moderate steepnesses (e < 0.3) within the analytical 
framework of RIT (resonant interaction theory). RIT supposes wave-wave 
interactions are weak so that nonlinear terms in the governing equations provide a 
small perturbation on the first-order (B' or linear) motion and that resonant 
interactions dominate non-resonant interactions, which are neglected. Thereby, the 
magnitudes of interactions are rank-ordered, and a hierarchy of approximate 
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dynamical models, which are asymptotically valid in the limit E + 0, is established. 
Usually, it remains for experimentalists to determine the actual numerical range of 
E for which the hierarchial models are accurate, and that was one of our objectives. 
I n  experiments, viscous effects and measurement resolution impose a lower bound on 
E ' that  must be exceeded in order to observe resonant nonlinear interactions ; 
however, it is the upper bound on E that  determines the robustness of the hierarchial 
models. Our search for an upper bound was not completely successful, owing to the 
inability of mechanical wavemakers to generate large-amplitude wavetrains without 
cross-wave contamination. But more importantly, we observed some ripple 
wavetrains for which no range of E was found that allowed us to  predict the outcome 
of an experiment using a straightforward application of hierarchial models from 
RIT. 

According to RIT, the hierarchy of dynamical models begins with resonant three- 
wave interactions, then resonant four-wave interactions, and so on. In  our 
experiments using ripple wavetrains with frequency f on clean, deep water, resonant 
triad interactions occur for f > 19.6 Hz and for the neighbourhood off  = 9.8 Hz, 
where a degenerate triad (internal resonance) occurs corresponding to  Wilton n = 2 
ripples. Resonant quartet interactions are possible for all frequencies, and a 
degenerate quartet occurs in the neighbourhood of f = 8.4 Hz corresponding to 
Wilton n = 3 ripples. Hence, resonant triads are expected to  dominate wavetrain 
evolution for f > 19.6 Hz, and resonant quartets are expected to dominate wavetrain 
evolution for f < 19.6 Hz. 

There is qualitative agreement between our experimental observations and RIT 
for wavetrains with f < 19.6 Hz. (We have not made a quantitative comparison.) In  
the neighbourhood off = 9.8 Hz, we observed the degenerate triad corresponding to 
Wilson n = 2 ripples, and it was excited for E x 0.04, which is quite small. When 
nonlinearity was increased t o  E x 0.10, both the first- and second-harmonic 
wavetrains of this degenerate triad became unstable by (degenerate) rhombus- 
quartet interactions. In  the neighbourhood off = 8.4 Hz, we observed the degenerate 
quartet corresponding to Wilton n = 3 ripples, and i t  was excited for E x 0.08. When 
nonlinearity was increased to  E x 0.20, the third-harmonic wavetrain was des- 
tabilized by rhombus-quartet interactions. Between 9.8 and 19.6 Hz rhombus- 
quartet interactions were dominant for all of the experimental wave steepnesses 
(8  x 0.15-0.30). 

There is qualitative disagreement between our experimental observations and RIT 
for wavetrains with f > 19.6 Hz. For these wavetrains evolution was observed to 
depend crucially on the nature of omnipresent, high-frequency, background waves 
(noise) whose amplitudes were exceedingly small and interactions with the test 
wavetrain were dynamically negligible according to RIT. If the high-frequency noise 
spectrum contained discrete component(s), a sequence of very small nonlinear 
interactions led to selective amplification of resonant triad(s) in the dynamically 
admissible low-frequency band of background waves. If the high-frequency noise 
spectrum was broad-banded, no resonant triads were selectively amplified. I n  the 
first case, the rhombus-quartet instability played an essential role on first-order 
effects, and in the second case, rhombus quartet interactions were the dominant first- 
order effect. These results persisted for all E above the minimum needed to  observe 
nonlinear interactions. These results suggest caution when using the hierarchial 
models of RIT to predict the dynamics of a weakly nonlinear system. 

The authors gratefully acknowledge financial support provided by the Army 



Experiments on ripple instabilities. Part 3 267 

Research Office and the Office of Naval Research through the DoD University 
Research Instrumentation Program (grant number N00014-86-G-0201 with the 
University of Florida). The equipment purchased under this contract was essential 
in performing this research. The College of Engineering at the University of Florida 
has made significant contributions to the development of the research laboratory, 
and that support is gratefully acknowledged. We also wish to thank the Office of 
Naval Research for their continuing support under contract N00014-85-K-0201 at 
the University of Florida, M. P. would like to thank J. H. for the opportunity to work 
with him. 

REFERENCES 

ABLOWITZ, M. J. t SEOUR, H.  1979 On the evolution of packets of water waves. J .  Fluid Mech. 

ABLOWITZ, M. J.  t SEOUR, H.  1981 Solitons and the Inverse Scattering Transform. SIAM. 
BENJAMIN, T. B. & FEIR, J. E. 1967 The disintegration of wave trains on deep water. Part 1. 

BENNEY, D. J. & NEWELL, A. C. 1966 The propagation of nonlinear wave envelopes. J .  Math. 

BENNEY, D.  J. & ROSKES, G. 1969 Wave instabilities. Stud. Appl. M a t h  48, 377-385. 
CHEN, B. t SAFFMAN, P. G. 1979 Steady gravity-capillary waves on deep water. I. Weakly 

nonlinear waves. Stud. Appl. M a t h  60, 183-210. 
CHEN, B. t SAFFMAN, P. G. 1980 Steady gravity-capillary waves on deep water. 11. Numerical 

results for finite amplitude. Stud. Appl. M a t h  62, 95-111. 
CHEN, B. t SAFFMAN, P. G. 1985 Three-dimensional stability and bifurcation of capillary and 

gravity waves on deep water. Stud. Appl. M a t h  72, 125-147. 
CHILDERS, D. t DURLING, A. 1975 Digital Filtering and Signal Processing. West Publishing 

Company. 
CRAIK, A. D. D. 1985 Wave Interactions and Fluid FlOWs. Cambridge University Press. 
CRAWFORD, D. R., LAKE, B. M., SAFFMAN, P.  G. t YUEN, H. C. 1981 Stability of weakly nonlinear 

DAVEY, A. & STEWARTSON, K. 1974 On three-dimensional packets of surface waves. Proc. R .  SOC. 

DJORDJEVIC, V. D. t REDEKOPP, L. G. 1977 On two-dimensional packets of capillary 
gravity waves. J .  Fluid Mech. 79, 703-714. 

HASIMOTO, H.  t ONO, H. 1972 Nonlinear modulation of gravity waves. J .  Phys. Soc. Japan 33, 
805-811. 

HENDERSON, D. 1986 Resonant interactions among ripples. MS thesis, Department of Engineering 
Sciences, University of Florida. 

HENDERSON, D. t HAMMACK, J. 1987 Experiments on ripple instabilities. Part 1. Resonant triads. 
J .  Fluid Mech. 184, 15-41. 

HENDERSON, D. t LEE, R. 1986 Laboratory generation and propagation of ripples. Phys. Fluids 
29, 619-624. 

HOGAN, S .  J. 1985 The fourth-order evolution equation for deep-water gravity-capillary waves. 
Proc. R .  SOC. Lond. A 402, 359-372. 

LAKE, B. M., YUEN, H. C., RUNOALDIER, H.  t FEROUSON, W. E. 1977 Nonlinear deep-water 
waves: Theory and experiment. Part 2. Evolution of a continuous wave train. J .  Fluid Mech. 
83, 49-74. 

92, 691-715. 

Theory. J .  Fluid Mech. 27, 417430. 

Phys. (Stud. Appl. M a t h )  46, 133-139. 

deep-water waves in two and three dimensions. J .  Fluid Mech. 105, 177-191. 

LO&. A338, 101-110. 

LAMB, H. L. 1932 Hydrodynamics. Dover. 
LIGHTHILL, M. J. 1965 Contributions to the theory of waves in non-linear dispersive systems. 

LONOUET-HIGOINS, M. S. 1978 The instabilities of gravity waves of finite amplitude in deep water. 
J .  Inst. M a t h  Applies 1, 269-306. 

11. Subharmonics. Proc. R .  SOC. Lond. A 360. 489-505. 



268 M .  Perlin and J .  Hammack 

MA, Y . 4 .  1979 The perturbed plane-wave solution of the cubic Schrodinger equation. Stud. Appl.  

MA, Y . 4 .  1982a On steady three-dimensional deep water weakly nonlinear gravity waves. Wave 

MA, Y.-C. 1982b Weakly nonlinear steady gravity-capillary waves. Phys. Fluids 25, 945-948. 
MCGOLDRICK, L. F. 1972 On the rippling of small waves: a harmonic nonlinear nearly resonant 

MCLEAN, J. W. 1982a Instabilities of finite-amplitude water waves. J. Fluid Mech. 114, 315-330. 
MCLEAN, J. W. 19823 Instabilities of finite-amplitude gravity waves on water of finite depth. 

J. Fluid Mech. 114, 331-341. 
MCLEAN, J. W., MA, Y.-C., MARTIN, D. U., SAFFMAN, P. G. & YUEN, H. C. 1981 A new type of 

three-dimensional instability of finite amplitude gravity waves. Phys. Rev. Lett. 46, 817-820. 
MARTIN, D. U. & YUEN, H.  C. 1980 Quasi-recurring energy leakage in the two-space dimensional 

nonlinear Schrodinger equation. Phys. Fluids 23, 881-883. 
MELVILLE, W. K. 1982 The instability and breaking of deep-water waves. J. Fluid Mech. 115, 

165-185. 
MEIRON, D. I., SAFFMAN, P. G. & YUEN, H. C. 1982 Calculation of steady three-dimensional deep- 

water waves. J. Fluid Mech. 124, 10g121. 
MILES, J. W .  1984 Nonlinear Faraday resonance. J. Fluid Mech. 146, 285-302. 
PERLIN, M., HENDERSON, D. & HAMMACK, J. 1990 Experiments on ripple instabilities. Part 2. 

PHILLIPS, 0. M. 1977 The Dynamics of the Upper Ocean. 2nd edn. Cambridge University Press. 
SAFFMAN, P. G. & YIJEN, H. C. 1980a Bifurcation and symmetry breaking in nonlinear dispersive 

SAFFMAN, P. G. & YUEN, H. C. 1980b A new type of three-dimensional deep-water wave of 

Su, M.-Y. 1982 Three-dimensional deep-water waves. Part 1. Experimental measurement of skew 

Su, M.-Y., BEROIN, M. ,  MARLER, P. & MYRICK, R. 1982 Experiments on nonlinear instabilities 

WHITHAM, G. B. 1967 Non-linear dispersion of water waves. J. Fluid Mech. 27, 39-12. 
WILTON, J. R. 1915 On ripples. Phil. May. 29(6), 688-700. 
YUEN, H. C. & FERQUSON, W. E. 1978 Relationship between Benjamin-Feir instability and 

recurrence in the nonlinear Schrodinger equation. Phys. Fluids 21, 1275-1278. 
YUEN, H. C. & LAKE, B. M. 1982 Nonlinear dynamics of deep-water gravity waves. Adv. Appl .  

Mech. 22, 67-229. 
ZAKHAROV, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. 

J. Appl .  Mech. Tech. Phys. (Engl. Transl.) 9, 196194. 
ZAHKAROV, V. E. & SHABAT, A. B. 1972 Exact theory of two-dimensional self-focusing and one- 

dimensional self-modulation waves in nonlinear media. Sou. Phys., J. Exp. Theor. Phys. 65, 

ZHANO, J. & MELVILLE, W. K. 1987 Three-dimensional instabilities of nonlinear gravity-capillary 

M a t h  60, 43-58. 

Motion 4, 113-125. 

interaction. J. Fluid Mech. 52, 725-751. 

Selective amplification of resonant triads. J. Fluid Mech. 219, 51-80. 

waves. Phys. Rev. Lett. 44, 1097-1100. 

permanent form. J. Fluid Mech. 101, 797-808. 

and symmetric wave patterns. J. Fluid Mech. 124, 73-108. 

and evolution of steep gravity-wave trains. J. Fluid Mech. 124, 45-72. 

997-101 1. 

waves. J. Fluid Mech. 174, 187-208. 


